
Beginning Python

Ankur Shrivastava

Linux User’s Group Manipal

January 29, 2010

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 1 / 44

Who are we?

Linux User’s Group Manipal

Life, Universe and FOSS!!

Believers of Knowledge Sharing

Most technologically focused
“group” in University

LUG Manipal is a non profit
“Group” alive only on voluntary
work!!

http://lugmanipal.org

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 2 / 44

http://lugmanipal.org

Points To Remember!!!

If you have problem(s) don’t hesitate to ask

Slides are based on Documentation so discussions are really
important, slides are for later reference!!

Please dont consider sessions as Class (i hate classes)

Speaker is just like any person sitting next to you

Documentation is really important

Google is your friend

If you have questions after this workshop mail me or come to LUG
Manipal’s forums

http://forums.lugmanipal.org

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 3 / 44

http://forums.lugmanipal.org

Points To Remember!!!

If you have problem(s) don’t hesitate to ask

Slides are based on Documentation so discussions are really
important, slides are for later reference!!

Please dont consider sessions as Class (i hate classes)

Speaker is just like any person sitting next to you

Documentation is really important

Google is your friend

If you have questions after this workshop mail me or come to LUG
Manipal’s forums

http://forums.lugmanipal.org

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 3 / 44

http://forums.lugmanipal.org

Points To Remember!!!

If you have problem(s) don’t hesitate to ask

Slides are based on Documentation so discussions are really
important, slides are for later reference!!

Please dont consider sessions as Class (i hate classes)

Speaker is just like any person sitting next to you

Documentation is really important

Google is your friend

If you have questions after this workshop mail me or come to LUG
Manipal’s forums

http://forums.lugmanipal.org

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 3 / 44

http://forums.lugmanipal.org

Points To Remember!!!

If you have problem(s) don’t hesitate to ask

Slides are based on Documentation so discussions are really
important, slides are for later reference!!

Please dont consider sessions as Class (i hate classes)

Speaker is just like any person sitting next to you

Documentation is really important

Google is your friend

If you have questions after this workshop mail me or come to LUG
Manipal’s forums

http://forums.lugmanipal.org

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 3 / 44

http://forums.lugmanipal.org

Points To Remember!!!

If you have problem(s) don’t hesitate to ask

Slides are based on Documentation so discussions are really
important, slides are for later reference!!

Please dont consider sessions as Class (i hate classes)

Speaker is just like any person sitting next to you

Documentation is really important

Google is your friend

If you have questions after this workshop mail me or come to LUG
Manipal’s forums

http://forums.lugmanipal.org

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 3 / 44

http://forums.lugmanipal.org

Points To Remember!!!

If you have problem(s) don’t hesitate to ask

Slides are based on Documentation so discussions are really
important, slides are for later reference!!

Please dont consider sessions as Class (i hate classes)

Speaker is just like any person sitting next to you

Documentation is really important

Google is your friend

If you have questions after this workshop mail me or come to LUG
Manipal’s forums

http://forums.lugmanipal.org

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 3 / 44

http://forums.lugmanipal.org

Points To Remember!!!

If you have problem(s) don’t hesitate to ask

Slides are based on Documentation so discussions are really
important, slides are for later reference!!

Please dont consider sessions as Class (i hate classes)

Speaker is just like any person sitting next to you

Documentation is really important

Google is your friend

If you have questions after this workshop mail me or come to LUG
Manipal’s forums

http://forums.lugmanipal.org

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 3 / 44

http://forums.lugmanipal.org

What is Python?

Python is a general purpose, object oriented, high level, interpreted
language

Developed in early 90’s by Guido Van Rossum

Its Simple, Portable, Open Source and Powerfull.

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 4 / 44

What we will learn?

History, Features and basic detail

Language Basics

Control Flow

Functions

Modules

File I/O

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 5 / 44

What we require?

Python interpreter
Gnu/Linux − > Already installed in all distro’s
Mac − > Already Installed, if not download http://python.org
Windows − > Install Python from Python folder provided to you or
download from http://python.org

Text Editor
Gnu/Linux − > Vim/Emacs/Gedit/Kate/Geany any editor will do
Mac − > Vim/TextMate or any other Unix like text editor
Windows − > Notpad++, provided in Notepadpp folder or download
http://notepad-plus.sourceforge.net
Don’t use Notepad (MS) for editing code, always use Notepad++

Documentation for Python present in Docs folder, web
http://python.org/doc/

Set editor to expand tab to 4 spaces.

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 6 / 44

http://python.org
http://python.org
http://notepad-plus.sourceforge.net
http://python.org/doc/

What we require?

Python interpreter
Gnu/Linux − > Already installed in all distro’s
Mac − > Already Installed, if not download http://python.org
Windows − > Install Python from Python folder provided to you or
download from http://python.org

Text Editor
Gnu/Linux − > Vim/Emacs/Gedit/Kate/Geany any editor will do
Mac − > Vim/TextMate or any other Unix like text editor
Windows − > Notpad++, provided in Notepadpp folder or download
http://notepad-plus.sourceforge.net
Don’t use Notepad (MS) for editing code, always use Notepad++

Documentation for Python present in Docs folder, web
http://python.org/doc/

Set editor to expand tab to 4 spaces.

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 6 / 44

http://python.org
http://python.org
http://notepad-plus.sourceforge.net
http://python.org/doc/

What we require?

Python interpreter
Gnu/Linux − > Already installed in all distro’s
Mac − > Already Installed, if not download http://python.org
Windows − > Install Python from Python folder provided to you or
download from http://python.org

Text Editor
Gnu/Linux − > Vim/Emacs/Gedit/Kate/Geany any editor will do
Mac − > Vim/TextMate or any other Unix like text editor
Windows − > Notpad++, provided in Notepadpp folder or download
http://notepad-plus.sourceforge.net
Don’t use Notepad (MS) for editing code, always use Notepad++

Documentation for Python present in Docs folder, web
http://python.org/doc/

Set editor to expand tab to 4 spaces.

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 6 / 44

http://python.org
http://python.org
http://notepad-plus.sourceforge.net
http://python.org/doc/

Where is it used?

Used extensively in web => Django, TurboGears, Plone, etc

communicating with Databases => MySQL, PostgreSQL, Oracle, etc

Desktop GUI => GTK+, QT, Tk, etc

Scientific Computing => Scipy, Scientific Python, etc

Network Programming with frameworks/libraries like Twisted, etc

Software Development => SCons, Buildbot, Roundup, etc

Games and 3D graphics => pyGame, PyKyra, etc

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 7 / 44

Difference from C/C++/Java

No pointers (similar to Java)

No prior compilation to Bytecode(?), directly interpreted

Includes garbage collector(?)

Can be used in Procedure(?)/Object Oriented(?) approach/style

English like syntax

Very good for scripting

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 8 / 44

Difference from C/C++/Java

No pointers (similar to Java)

No prior compilation to Bytecode(?), directly interpreted

Includes garbage collector(?)

Can be used in Procedure(?)/Object Oriented(?) approach/style

English like syntax

Very good for scripting

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 8 / 44

Difference from C/C++/Java

No pointers (similar to Java)

No prior compilation to Bytecode(?), directly interpreted

Includes garbage collector(?)

Can be used in Procedure(?)/Object Oriented(?) approach/style

English like syntax

Very good for scripting

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 8 / 44

Difference from C/C++/Java

No pointers (similar to Java)

No prior compilation to Bytecode(?), directly interpreted

Includes garbage collector(?)

Can be used in Procedure(?)/Object Oriented(?) approach/style

English like syntax

Very good for scripting

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 8 / 44

Difference from C/C++/Java

No pointers (similar to Java)

No prior compilation to Bytecode(?), directly interpreted

Includes garbage collector(?)

Can be used in Procedure(?)/Object Oriented(?) approach/style

English like syntax

Very good for scripting

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 8 / 44

Difference from C/C++/Java

No pointers (similar to Java)

No prior compilation to Bytecode(?), directly interpreted

Includes garbage collector(?)

Can be used in Procedure(?)/Object Oriented(?) approach/style

English like syntax

Very good for scripting

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 8 / 44

Versions of Python

What do you mean by versions, Python is a language ?

Ans) Python as a language keeps on evolving and new features are
being added to the language, here by versions we refer to the python
interpreter version, new features are added to python interpreter in
every release.

important versions are Python 2.6/2.7 and 3.0/3.1

we will focus on Python 2.6/2.7 and not Python 3.0/3.1

Python 3.0/3.1 is the future of Python and has non compatible
changes from Python 2.X, currently there is less support of Python
3.X and it will take a few years before it matches with that of Python
2.X

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 9 / 44

Versions of Python

What do you mean by versions, Python is a language ?
Ans) Python as a language keeps on evolving and new features are
being added to the language, here by versions we refer to the python
interpreter version, new features are added to python interpreter in
every release.

important versions are Python 2.6/2.7 and 3.0/3.1

we will focus on Python 2.6/2.7 and not Python 3.0/3.1

Python 3.0/3.1 is the future of Python and has non compatible
changes from Python 2.X, currently there is less support of Python
3.X and it will take a few years before it matches with that of Python
2.X

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 9 / 44

Versions of Python

What do you mean by versions, Python is a language ?
Ans) Python as a language keeps on evolving and new features are
being added to the language, here by versions we refer to the python
interpreter version, new features are added to python interpreter in
every release.

important versions are Python 2.6/2.7 and 3.0/3.1

we will focus on Python 2.6/2.7 and not Python 3.0/3.1

Python 3.0/3.1 is the future of Python and has non compatible
changes from Python 2.X, currently there is less support of Python
3.X and it will take a few years before it matches with that of Python
2.X

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 9 / 44

Interactive session

What is interactive session ?

Allows you to test your idea/logic/code and play arround with it,
works as a shell, you can try out almost anything but whatever you
type is note saved.

How to start an interactive session ?
On Linux open terminal and type python
On Windows, open Python in program files.

to exit an interactive session type quit() or
press Ctrl + D on Unix like machine
press Ctrl + Z on Windows machine

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 10 / 44

Interactive session

What is interactive session ?
Allows you to test your idea/logic/code and play arround with it,
works as a shell, you can try out almost anything but whatever you
type is note saved.

How to start an interactive session ?
On Linux open terminal and type python
On Windows, open Python in program files.

to exit an interactive session type quit() or
press Ctrl + D on Unix like machine
press Ctrl + Z on Windows machine

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 10 / 44

Interactive session

What is interactive session ?
Allows you to test your idea/logic/code and play arround with it,
works as a shell, you can try out almost anything but whatever you
type is note saved.

How to start an interactive session ?

On Linux open terminal and type python
On Windows, open Python in program files.

to exit an interactive session type quit() or
press Ctrl + D on Unix like machine
press Ctrl + Z on Windows machine

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 10 / 44

Interactive session

What is interactive session ?
Allows you to test your idea/logic/code and play arround with it,
works as a shell, you can try out almost anything but whatever you
type is note saved.

How to start an interactive session ?
On Linux open terminal and type python
On Windows, open Python in program files.

to exit an interactive session type quit() or
press Ctrl + D on Unix like machine
press Ctrl + Z on Windows machine

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 10 / 44

Interactive session

What is interactive session ?
Allows you to test your idea/logic/code and play arround with it,
works as a shell, you can try out almost anything but whatever you
type is note saved.

How to start an interactive session ?
On Linux open terminal and type python
On Windows, open Python in program files.

to exit an interactive session type quit() or
press Ctrl + D on Unix like machine
press Ctrl + Z on Windows machine

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 10 / 44

Language Basics

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 11 / 44

Indentation

In Python indentation is very important.

There are no end/begin delimiteres like { }
Grouping of statements are done on basis of their indentation.
Statements at same indentation are grouped together in a single
block.

Its recommended to use 4 spaces instead of tabs.

marks start of comment (single line)

sample code

a = 10
if a/10 == 1:

print ‘‘i think’’ # notice 4 spaces before this print
print ‘‘the value was’’ # and this print
print ‘‘10’’ # and this print

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 12 / 44

Indentation

In Python indentation is very important.

There are no end/begin delimiteres like { }
Grouping of statements are done on basis of their indentation.
Statements at same indentation are grouped together in a single
block.

Its recommended to use 4 spaces instead of tabs.

marks start of comment (single line)

sample code

a = 10
if a/10 == 1:

print ‘‘i think’’ # notice 4 spaces before this print
print ‘‘the value was’’ # and this print
print ‘‘10’’ # and this print

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 12 / 44

Numbers

Integer numbers =>
decimal -> 1, 44, -44, 2309
octal -> 01, 022, 077
hexadecimal -> 0x1, 0x23, 0x3f
long -> 121212L, 2323232938238293829382938293283293825L

Floating point => 0.0, 0.32, 2.23e2

Complex numbers => 10+10j, 1+2j, 3-4j where j = −11/2

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 13 / 44

Numbers

Integer numbers =>
decimal -> 1, 44, -44, 2309
octal -> 01, 022, 077
hexadecimal -> 0x1, 0x23, 0x3f
long -> 121212L, 2323232938238293829382938293283293825L

Floating point => 0.0, 0.32, 2.23e2

Complex numbers => 10+10j, 1+2j, 3-4j where j = −11/2

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 13 / 44

Numbers

Integer numbers =>
decimal -> 1, 44, -44, 2309
octal -> 01, 022, 077
hexadecimal -> 0x1, 0x23, 0x3f
long -> 121212L, 2323232938238293829382938293283293825L

Floating point => 0.0, 0.32, 2.23e2

Complex numbers => 10+10j, 1+2j, 3-4j where j = −11/2

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 13 / 44

String

There is no character data type in python

Strings can be quoted in single (’,“) or triple (”’,“““) quotes

Special characters can be inserted by using the escape character \
Some commonly used escape sequesces =>
\\ for a \ in string
\’ for ’ in a string
\” for “ in a string
\n for a newline
\r for cariage return
\t for tab

Example

>>>s = ’Line contaning \’ and \\ in itself’
>>>print s
Line contaning ’ and \ in itself

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 14 / 44

String

There is no character data type in python

Strings can be quoted in single (’,“) or triple (”’,“““) quotes

Special characters can be inserted by using the escape character \
Some commonly used escape sequesces =>
\\ for a \ in string
\’ for ’ in a string
\” for “ in a string
\n for a newline
\r for cariage return
\t for tab

Example

>>>s = ’Line contaning \’ and \\ in itself’
>>>print s
Line contaning ’ and \ in itself

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 14 / 44

Tuple

Tuple is an immutable(?) ordered sequence of items(?)

Tuples can be considered as constant array

There can have nesting of tuples one inside other

Elements in a Tuple does not have to be of same type

Assignment -> t = (1,2,3,4,‘‘abc’’,2.34,(10,11))

Elements can be accessed in way similar to an array

Example

>>> t = (1,2,3,4,‘‘abc’’,2.34,(10,11))
>>> t[0]
1
>>> t[4]
’abc’
>>> t[6]
(10,11)

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 15 / 44

Tuple

Tuple is an immutable(?) ordered sequence of items(?)

Tuples can be considered as constant array

There can have nesting of tuples one inside other

Elements in a Tuple does not have to be of same type

Assignment -> t = (1,2,3,4,‘‘abc’’,2.34,(10,11))

Elements can be accessed in way similar to an array

Example

>>> t = (1,2,3,4,‘‘abc’’,2.34,(10,11))
>>> t[0]
1
>>> t[4]
’abc’
>>> t[6]
(10,11)

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 15 / 44

Tuple

Tuple is an immutable(?) ordered sequence of items(?)

Tuples can be considered as constant array

There can have nesting of tuples one inside other

Elements in a Tuple does not have to be of same type

Assignment -> t = (1,2,3,4,‘‘abc’’,2.34,(10,11))

Elements can be accessed in way similar to an array

Example

>>> t = (1,2,3,4,‘‘abc’’,2.34,(10,11))
>>> t[0]

1
>>> t[4]
’abc’
>>> t[6]
(10,11)

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 15 / 44

Tuple

Tuple is an immutable(?) ordered sequence of items(?)

Tuples can be considered as constant array

There can have nesting of tuples one inside other

Elements in a Tuple does not have to be of same type

Assignment -> t = (1,2,3,4,‘‘abc’’,2.34,(10,11))

Elements can be accessed in way similar to an array

Example

>>> t = (1,2,3,4,‘‘abc’’,2.34,(10,11))
>>> t[0]
1
>>> t[4]

’abc’
>>> t[6]
(10,11)

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 15 / 44

Tuple

Tuple is an immutable(?) ordered sequence of items(?)

Tuples can be considered as constant array

There can have nesting of tuples one inside other

Elements in a Tuple does not have to be of same type

Assignment -> t = (1,2,3,4,‘‘abc’’,2.34,(10,11))

Elements can be accessed in way similar to an array

Example

>>> t = (1,2,3,4,‘‘abc’’,2.34,(10,11))
>>> t[0]
1
>>> t[4]
’abc’
>>> t[6]

(10,11)

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 15 / 44

Tuple

Tuple is an immutable(?) ordered sequence of items(?)

Tuples can be considered as constant array

There can have nesting of tuples one inside other

Elements in a Tuple does not have to be of same type

Assignment -> t = (1,2,3,4,‘‘abc’’,2.34,(10,11))

Elements can be accessed in way similar to an array

Example

>>> t = (1,2,3,4,‘‘abc’’,2.34,(10,11))
>>> t[0]
1
>>> t[4]
’abc’
>>> t[6]
(10,11)

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 15 / 44

List

List is a mutable ordered sequence of items

Items in a list can be added or removed

There can have nesting of lists one inside other

Elements in a List does not have to be of same type

Assignment -> l = [1,2,3,4,‘‘abc’’,2.34,[10,11]]

Data access and assignment similar to an array

Example

>>> l = [1,2,3,4,‘‘abc’’,2.34,[10,11]]
>>> l[0]
1
>>> l[6]
[10,11]
>>> l[6][0]
10

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 16 / 44

List

List is a mutable ordered sequence of items

Items in a list can be added or removed

There can have nesting of lists one inside other

Elements in a List does not have to be of same type

Assignment -> l = [1,2,3,4,‘‘abc’’,2.34,[10,11]]

Data access and assignment similar to an array

Example

>>> l = [1,2,3,4,‘‘abc’’,2.34,[10,11]]
>>> l[0]

1
>>> l[6]
[10,11]
>>> l[6][0]
10

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 16 / 44

List

List is a mutable ordered sequence of items

Items in a list can be added or removed

There can have nesting of lists one inside other

Elements in a List does not have to be of same type

Assignment -> l = [1,2,3,4,‘‘abc’’,2.34,[10,11]]

Data access and assignment similar to an array

Example

>>> l = [1,2,3,4,‘‘abc’’,2.34,[10,11]]
>>> l[0]
1
>>> l[6]

[10,11]
>>> l[6][0]
10

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 16 / 44

List

List is a mutable ordered sequence of items

Items in a list can be added or removed

There can have nesting of lists one inside other

Elements in a List does not have to be of same type

Assignment -> l = [1,2,3,4,‘‘abc’’,2.34,[10,11]]

Data access and assignment similar to an array

Example

>>> l = [1,2,3,4,‘‘abc’’,2.34,[10,11]]
>>> l[0]
1
>>> l[6]
[10,11]
>>> l[6][0]

10

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 16 / 44

List

List is a mutable ordered sequence of items

Items in a list can be added or removed

There can have nesting of lists one inside other

Elements in a List does not have to be of same type

Assignment -> l = [1,2,3,4,‘‘abc’’,2.34,[10,11]]

Data access and assignment similar to an array

Example

>>> l = [1,2,3,4,‘‘abc’’,2.34,[10,11]]
>>> l[0]
1
>>> l[6]
[10,11]
>>> l[6][0]
10

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 16 / 44

Dictionaries

Dictionaries are containers which store items in key/value pairs(?).

Dictionaries are mutable but does not have any defined sequence.

Key can be any integer or string and Value can be any item.

As in Dictionaries values can be accessed by using the key.

Assignment -> d = { ’key’:’value’, 1:’value’, ’abc’:[1,2,3,4] }
Value can be accessed using the key and keys are unique.

Example

>>> d = { ’key’:’value’, 1:’value’, ’abc’:[1,2,3,4] }
>>> d[’key’]
’value’
>>> d[1]
’value’
>>> d[’abc’]
[1, 2, 3, 4]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 17 / 44

Dictionaries

Dictionaries are containers which store items in key/value pairs(?).

Dictionaries are mutable but does not have any defined sequence.

Key can be any integer or string and Value can be any item.

As in Dictionaries values can be accessed by using the key.

Assignment -> d = { ’key’:’value’, 1:’value’, ’abc’:[1,2,3,4] }
Value can be accessed using the key and keys are unique.

Example

>>> d = { ’key’:’value’, 1:’value’, ’abc’:[1,2,3,4] }
>>> d[’key’]

’value’
>>> d[1]
’value’
>>> d[’abc’]
[1, 2, 3, 4]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 17 / 44

Dictionaries

Dictionaries are containers which store items in key/value pairs(?).

Dictionaries are mutable but does not have any defined sequence.

Key can be any integer or string and Value can be any item.

As in Dictionaries values can be accessed by using the key.

Assignment -> d = { ’key’:’value’, 1:’value’, ’abc’:[1,2,3,4] }
Value can be accessed using the key and keys are unique.

Example

>>> d = { ’key’:’value’, 1:’value’, ’abc’:[1,2,3,4] }
>>> d[’key’]
’value’
>>> d[1]

’value’
>>> d[’abc’]
[1, 2, 3, 4]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 17 / 44

Dictionaries

Dictionaries are containers which store items in key/value pairs(?).

Dictionaries are mutable but does not have any defined sequence.

Key can be any integer or string and Value can be any item.

As in Dictionaries values can be accessed by using the key.

Assignment -> d = { ’key’:’value’, 1:’value’, ’abc’:[1,2,3,4] }
Value can be accessed using the key and keys are unique.

Example

>>> d = { ’key’:’value’, 1:’value’, ’abc’:[1,2,3,4] }
>>> d[’key’]
’value’
>>> d[1]
’value’
>>> d[’abc’]

[1, 2, 3, 4]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 17 / 44

Dictionaries

Dictionaries are containers which store items in key/value pairs(?).

Dictionaries are mutable but does not have any defined sequence.

Key can be any integer or string and Value can be any item.

As in Dictionaries values can be accessed by using the key.

Assignment -> d = { ’key’:’value’, 1:’value’, ’abc’:[1,2,3,4] }
Value can be accessed using the key and keys are unique.

Example

>>> d = { ’key’:’value’, 1:’value’, ’abc’:[1,2,3,4] }
>>> d[’key’]
’value’
>>> d[1]
’value’
>>> d[’abc’]
[1, 2, 3, 4]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 17 / 44

Index and Slices

List, Tuple, String, etc can be sliced to get part of data from them.

Index -> similar to array index refers to position of data.

Slice -> use to reterive data within particular index.

Example

>>> s = “LUG MANIPAL”
>>> s[0]

’L’
>>> s[2]
’G’
>>> s[0:3]
’LUG’ from 0 till 3, not including 3!!
>>> s[:3]
’LUG’ from start till 3, not including 3!!
>>> s[4:]
’MANIPAL’ from 4 till end

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 18 / 44

Index and Slices

List, Tuple, String, etc can be sliced to get part of data from them.

Index -> similar to array index refers to position of data.

Slice -> use to reterive data within particular index.

Example

>>> s = “LUG MANIPAL”
>>> s[0]
’L’
>>> s[2]

’G’
>>> s[0:3]
’LUG’ from 0 till 3, not including 3!!
>>> s[:3]
’LUG’ from start till 3, not including 3!!
>>> s[4:]
’MANIPAL’ from 4 till end

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 18 / 44

Index and Slices

List, Tuple, String, etc can be sliced to get part of data from them.

Index -> similar to array index refers to position of data.

Slice -> use to reterive data within particular index.

Example

>>> s = “LUG MANIPAL”
>>> s[0]
’L’
>>> s[2]
’G’
>>> s[0:3]

’LUG’ from 0 till 3, not including 3!!
>>> s[:3]
’LUG’ from start till 3, not including 3!!
>>> s[4:]
’MANIPAL’ from 4 till end

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 18 / 44

Index and Slices

List, Tuple, String, etc can be sliced to get part of data from them.

Index -> similar to array index refers to position of data.

Slice -> use to reterive data within particular index.

Example

>>> s = “LUG MANIPAL”
>>> s[0]
’L’
>>> s[2]
’G’
>>> s[0:3]
’LUG’ from 0 till 3, not including 3!!
>>> s[:3]

’LUG’ from start till 3, not including 3!!
>>> s[4:]
’MANIPAL’ from 4 till end

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 18 / 44

Index and Slices

List, Tuple, String, etc can be sliced to get part of data from them.

Index -> similar to array index refers to position of data.

Slice -> use to reterive data within particular index.

Example

>>> s = “LUG MANIPAL”
>>> s[0]
’L’
>>> s[2]
’G’
>>> s[0:3]
’LUG’ from 0 till 3, not including 3!!
>>> s[:3]
’LUG’ from start till 3, not including 3!!
>>> s[4:]

’MANIPAL’ from 4 till end

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 18 / 44

Index and Slices

List, Tuple, String, etc can be sliced to get part of data from them.

Index -> similar to array index refers to position of data.

Slice -> use to reterive data within particular index.

Example

>>> s = “LUG MANIPAL”
>>> s[0]
’L’
>>> s[2]
’G’
>>> s[0:3]
’LUG’ from 0 till 3, not including 3!!
>>> s[:3]
’LUG’ from start till 3, not including 3!!
>>> s[4:]
’MANIPAL’ from 4 till end

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 18 / 44

Index and Slices contd.

Example

>>> s = “LUG MANIPAL”
>>> s[:11:2]

’LGMNPL’ from start till 11, every 2nd element
>>> s[:11:3]
’L NA’ from start till 11, every 3rd element
>>> s[-1]
’L’ last element
>>> s[-7:]
’MANIPAL’
>>> s[:-8]
’LUG’

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 19 / 44

Index and Slices contd.

Example

>>> s = “LUG MANIPAL”
>>> s[:11:2]
’LGMNPL’ from start till 11, every 2nd element
>>> s[:11:3]

’L NA’ from start till 11, every 3rd element
>>> s[-1]
’L’ last element
>>> s[-7:]
’MANIPAL’
>>> s[:-8]
’LUG’

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 19 / 44

Index and Slices contd.

Example

>>> s = “LUG MANIPAL”
>>> s[:11:2]
’LGMNPL’ from start till 11, every 2nd element
>>> s[:11:3]
’L NA’ from start till 11, every 3rd element
>>> s[-1]

’L’ last element
>>> s[-7:]
’MANIPAL’
>>> s[:-8]
’LUG’

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 19 / 44

Index and Slices contd.

Example

>>> s = “LUG MANIPAL”
>>> s[:11:2]
’LGMNPL’ from start till 11, every 2nd element
>>> s[:11:3]
’L NA’ from start till 11, every 3rd element
>>> s[-1]
’L’ last element
>>> s[-7:]

’MANIPAL’
>>> s[:-8]
’LUG’

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 19 / 44

Index and Slices contd.

Example

>>> s = “LUG MANIPAL”
>>> s[:11:2]
’LGMNPL’ from start till 11, every 2nd element
>>> s[:11:3]
’L NA’ from start till 11, every 3rd element
>>> s[-1]
’L’ last element
>>> s[-7:]
’MANIPAL’
>>> s[:-8]

’LUG’

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 19 / 44

Index and Slices contd.

Example

>>> s = “LUG MANIPAL”
>>> s[:11:2]
’LGMNPL’ from start till 11, every 2nd element
>>> s[:11:3]
’L NA’ from start till 11, every 3rd element
>>> s[-1]
’L’ last element
>>> s[-7:]
’MANIPAL’
>>> s[:-8]
’LUG’

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 19 / 44

Variables

There no prior type declaration required for variables.

A variable can reffer to any Data Type (like Tuple, List, Dictionary,
Int, String, Complex, or any other object).

Variables are references(?) to allocated memory(?).

References are always shared(?).

use functions list(old list) and dict(old dict) to obtain copy.

Note Be carefull with references they can lead to nasty things!!!

NOTE

>>> l = [1, 2, 3, 4]
>>> d = {’key’:l}
>>> d[’key’]
[1, 2, 3, 4]
>>> l[0] = 0
>>> d[’key’]
[0, 2, 3, 4]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 20 / 44

Variables

There no prior type declaration required for variables.

A variable can reffer to any Data Type (like Tuple, List, Dictionary,
Int, String, Complex, or any other object).

Variables are references(?) to allocated memory(?).

References are always shared(?).

use functions list(old list) and dict(old dict) to obtain copy.

Note Be carefull with references they can lead to nasty things!!!

NOTE

>>> l = [1, 2, 3, 4]
>>> d = {’key’:l}
>>> d[’key’]
[1, 2, 3, 4]
>>> l[0] = 0
>>> d[’key’]
[0, 2, 3, 4]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 20 / 44

Variables

There no prior type declaration required for variables.

A variable can reffer to any Data Type (like Tuple, List, Dictionary,
Int, String, Complex, or any other object).

Variables are references(?) to allocated memory(?).

References are always shared(?).

use functions list(old list) and dict(old dict) to obtain copy.

Note Be carefull with references they can lead to nasty things!!!

NOTE

>>> l = [1, 2, 3, 4]
>>> d = {’key’:l}
>>> d[’key’]
[1, 2, 3, 4]
>>> l[0] = 0
>>> d[’key’]
[0, 2, 3, 4]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 20 / 44

Variables

There no prior type declaration required for variables.

A variable can reffer to any Data Type (like Tuple, List, Dictionary,
Int, String, Complex, or any other object).

Variables are references(?) to allocated memory(?).

References are always shared(?).

use functions list(old list) and dict(old dict) to obtain copy.

Note Be carefull with references they can lead to nasty things!!!

NOTE

>>> l = [1, 2, 3, 4]
>>> d = {’key’:l}
>>> d[’key’]
[1, 2, 3, 4]
>>> l[0] = 0
>>> d[’key’]
[0, 2, 3, 4]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 20 / 44

Variables

There no prior type declaration required for variables.

A variable can reffer to any Data Type (like Tuple, List, Dictionary,
Int, String, Complex, or any other object).

Variables are references(?) to allocated memory(?).

References are always shared(?).

use functions list(old list) and dict(old dict) to obtain copy.

Note Be carefull with references they can lead to nasty things!!!

NOTE

>>> l = [1, 2, 3, 4]
>>> d = {’key’:l}
>>> d[’key’]
[1, 2, 3, 4]
>>> l[0] = 0
>>> d[’key’]
[0, 2, 3, 4]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 20 / 44

Variables

There no prior type declaration required for variables.

A variable can reffer to any Data Type (like Tuple, List, Dictionary,
Int, String, Complex, or any other object).

Variables are references(?) to allocated memory(?).

References are always shared(?).

use functions list(old list) and dict(old dict) to obtain copy.

Note Be carefull with references they can lead to nasty things!!!

NOTE

>>> l = [1, 2, 3, 4]
>>> d = {’key’:l}
>>> d[’key’]

[1, 2, 3, 4]
>>> l[0] = 0
>>> d[’key’]
[0, 2, 3, 4]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 20 / 44

Variables

There no prior type declaration required for variables.

A variable can reffer to any Data Type (like Tuple, List, Dictionary,
Int, String, Complex, or any other object).

Variables are references(?) to allocated memory(?).

References are always shared(?).

use functions list(old list) and dict(old dict) to obtain copy.

Note Be carefull with references they can lead to nasty things!!!

NOTE

>>> l = [1, 2, 3, 4]
>>> d = {’key’:l}
>>> d[’key’]
[1, 2, 3, 4]

>>> l[0] = 0
>>> d[’key’]
[0, 2, 3, 4]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 20 / 44

Variables

There no prior type declaration required for variables.

A variable can reffer to any Data Type (like Tuple, List, Dictionary,
Int, String, Complex, or any other object).

Variables are references(?) to allocated memory(?).

References are always shared(?).

use functions list(old list) and dict(old dict) to obtain copy.

Note Be carefull with references they can lead to nasty things!!!

NOTE

>>> l = [1, 2, 3, 4]
>>> d = {’key’:l}
>>> d[’key’]
[1, 2, 3, 4]
>>> l[0] = 0
>>> d[’key’]

[0, 2, 3, 4]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 20 / 44

Variables

There no prior type declaration required for variables.

A variable can reffer to any Data Type (like Tuple, List, Dictionary,
Int, String, Complex, or any other object).

Variables are references(?) to allocated memory(?).

References are always shared(?).

use functions list(old list) and dict(old dict) to obtain copy.

Note Be carefull with references they can lead to nasty things!!!

NOTE

>>> l = [1, 2, 3, 4]
>>> d = {’key’:l}
>>> d[’key’]
[1, 2, 3, 4]
>>> l[0] = 0
>>> d[’key’]
[0, 2, 3, 4]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 20 / 44

Helpful Functions

help(<obj>) provides help/documentaion for the object using
pydoc.help.

dir(<obj>) lists the attributes/methods avaliable for that object.
attributes/methods starting with / are internal attributes/methods
and should not be used unless you know what you are doing.

dir() returns names in current scope

Example

>>> l = [1, 2, 3]
>>> dir(l)
[’ add ’, ’ class ’, ’ contains ’, ’ delattr ’, ’ delitem ’, ’ delslice ’,
’ doc ’, ’ eq ’, ’ format ’, ’ ge ’, ’ getattribute ’, ’ getitem ’,
’ getslice ’, ’ gt ’, ’ hash ’, ’ iadd ’, ’ imul ’, ’ init ’, ’ iter ’, ’ le ’,
’ len ’, ’ lt ’, ’ mul ’, ’ ne ’, ’ new ’, ’ reduce ’, ’ reduce ex ’,
’ repr ’, ’ reversed ’, ’ rmul ’, ’ setattr ’, ’ setitem ’, ’ setslice ’,
’ sizeof ’, ’ str ’, ’ subclasshook ’, ’append’, ’count’, ’extend’, ’index’,
’insert’, ’pop’, ’remove’, ’reverse’, ’sort’]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 21 / 44

Helpful Functions

help(<obj>) provides help/documentaion for the object using
pydoc.help.

dir(<obj>) lists the attributes/methods avaliable for that object.
attributes/methods starting with / are internal attributes/methods
and should not be used unless you know what you are doing.

dir() returns names in current scope

Example

>>> l = [1, 2, 3]
>>> dir(l)
[’ add ’, ’ class ’, ’ contains ’, ’ delattr ’, ’ delitem ’, ’ delslice ’,
’ doc ’, ’ eq ’, ’ format ’, ’ ge ’, ’ getattribute ’, ’ getitem ’,
’ getslice ’, ’ gt ’, ’ hash ’, ’ iadd ’, ’ imul ’, ’ init ’, ’ iter ’, ’ le ’,
’ len ’, ’ lt ’, ’ mul ’, ’ ne ’, ’ new ’, ’ reduce ’, ’ reduce ex ’,
’ repr ’, ’ reversed ’, ’ rmul ’, ’ setattr ’, ’ setitem ’, ’ setslice ’,
’ sizeof ’, ’ str ’, ’ subclasshook ’, ’append’, ’count’, ’extend’, ’index’,
’insert’, ’pop’, ’remove’, ’reverse’, ’sort’]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 21 / 44

Helpful Functions

help(<obj>) provides help/documentaion for the object using
pydoc.help.

dir(<obj>) lists the attributes/methods avaliable for that object.
attributes/methods starting with / are internal attributes/methods
and should not be used unless you know what you are doing.

dir() returns names in current scope

Example

>>> l = [1, 2, 3]
>>> dir(l)
[’ add ’, ’ class ’, ’ contains ’, ’ delattr ’, ’ delitem ’, ’ delslice ’,
’ doc ’, ’ eq ’, ’ format ’, ’ ge ’, ’ getattribute ’, ’ getitem ’,
’ getslice ’, ’ gt ’, ’ hash ’, ’ iadd ’, ’ imul ’, ’ init ’, ’ iter ’, ’ le ’,
’ len ’, ’ lt ’, ’ mul ’, ’ ne ’, ’ new ’, ’ reduce ’, ’ reduce ex ’,
’ repr ’, ’ reversed ’, ’ rmul ’, ’ setattr ’, ’ setitem ’, ’ setslice ’,
’ sizeof ’, ’ str ’, ’ subclasshook ’, ’append’, ’count’, ’extend’, ’index’,
’insert’, ’pop’, ’remove’, ’reverse’, ’sort’]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 21 / 44

Helpful Functions

help(<obj>) provides help/documentaion for the object using
pydoc.help.

dir(<obj>) lists the attributes/methods avaliable for that object.
attributes/methods starting with / are internal attributes/methods
and should not be used unless you know what you are doing.

dir() returns names in current scope

Example

>>> l = [1, 2, 3]
>>> dir(l)
[’ add ’, ’ class ’, ’ contains ’, ’ delattr ’, ’ delitem ’, ’ delslice ’,
’ doc ’, ’ eq ’, ’ format ’, ’ ge ’, ’ getattribute ’, ’ getitem ’,
’ getslice ’, ’ gt ’, ’ hash ’, ’ iadd ’, ’ imul ’, ’ init ’, ’ iter ’, ’ le ’,
’ len ’, ’ lt ’, ’ mul ’, ’ ne ’, ’ new ’, ’ reduce ’, ’ reduce ex ’,
’ repr ’, ’ reversed ’, ’ rmul ’, ’ setattr ’, ’ setitem ’, ’ setslice ’,
’ sizeof ’, ’ str ’, ’ subclasshook ’, ’append’, ’count’, ’extend’, ’index’,
’insert’, ’pop’, ’remove’, ’reverse’, ’sort’]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 21 / 44

List Operations

l.append(< val >) − > adds < val > at the end of list.

l.extend(< List >) − > adds all element in < list > to ’l’.

l.insert(< pos >, < val >) − > Inserts < val > at position < pos >.

l.remove(< val >) − > removes first element matching < val >,
raises ValueError if no such value exists.

l.index(< val >) − > returns index of first occurence of < val >,
raises ValueError if no such value exists.

l.pop(< index >) − > removes element at < index >, if no index is
specified last element is returned.

Example

>>> l = [1, 2, 3, 4, 5, 6, 7]
>>> l.append(8)
>>> l
[1, 2, 3, 4, 5, 6, 7, 8]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 22 / 44

List Operations

l.append(< val >) − > adds < val > at the end of list.

l.extend(< List >) − > adds all element in < list > to ’l’.

l.insert(< pos >, < val >) − > Inserts < val > at position < pos >.

l.remove(< val >) − > removes first element matching < val >,
raises ValueError if no such value exists.

l.index(< val >) − > returns index of first occurence of < val >,
raises ValueError if no such value exists.

l.pop(< index >) − > removes element at < index >, if no index is
specified last element is returned.

Example

>>> l = [1, 2, 3, 4, 5, 6, 7]
>>> l.append(8)
>>> l
[1, 2, 3, 4, 5, 6, 7, 8]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 22 / 44

List Operations

l.append(< val >) − > adds < val > at the end of list.

l.extend(< List >) − > adds all element in < list > to ’l’.

l.insert(< pos >, < val >) − > Inserts < val > at position < pos >.

l.remove(< val >) − > removes first element matching < val >,
raises ValueError if no such value exists.

l.index(< val >) − > returns index of first occurence of < val >,
raises ValueError if no such value exists.

l.pop(< index >) − > removes element at < index >, if no index is
specified last element is returned.

Example

>>> l = [1, 2, 3, 4, 5, 6, 7]
>>> l.append(8)
>>> l
[1, 2, 3, 4, 5, 6, 7, 8]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 22 / 44

List Operations

l.append(< val >) − > adds < val > at the end of list.

l.extend(< List >) − > adds all element in < list > to ’l’.

l.insert(< pos >, < val >) − > Inserts < val > at position < pos >.

l.remove(< val >) − > removes first element matching < val >,
raises ValueError if no such value exists.

l.index(< val >) − > returns index of first occurence of < val >,
raises ValueError if no such value exists.

l.pop(< index >) − > removes element at < index >, if no index is
specified last element is returned.

Example

>>> l = [1, 2, 3, 4, 5, 6, 7]
>>> l.append(8)
>>> l
[1, 2, 3, 4, 5, 6, 7, 8]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 22 / 44

List Operations

l.append(< val >) − > adds < val > at the end of list.

l.extend(< List >) − > adds all element in < list > to ’l’.

l.insert(< pos >, < val >) − > Inserts < val > at position < pos >.

l.remove(< val >) − > removes first element matching < val >,
raises ValueError if no such value exists.

l.index(< val >) − > returns index of first occurence of < val >,
raises ValueError if no such value exists.

l.pop(< index >) − > removes element at < index >, if no index is
specified last element is returned.

Example

>>> l = [1, 2, 3, 4, 5, 6, 7]
>>> l.append(8)
>>> l
[1, 2, 3, 4, 5, 6, 7, 8]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 22 / 44

List Operations

l.append(< val >) − > adds < val > at the end of list.

l.extend(< List >) − > adds all element in < list > to ’l’.

l.insert(< pos >, < val >) − > Inserts < val > at position < pos >.

l.remove(< val >) − > removes first element matching < val >,
raises ValueError if no such value exists.

l.index(< val >) − > returns index of first occurence of < val >,
raises ValueError if no such value exists.

l.pop(< index >) − > removes element at < index >, if no index is
specified last element is returned.

Example

>>> l = [1, 2, 3, 4, 5, 6, 7]
>>> l.append(8)
>>> l
[1, 2, 3, 4, 5, 6, 7, 8]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 22 / 44

List Operations

l.append(< val >) − > adds < val > at the end of list.

l.extend(< List >) − > adds all element in < list > to ’l’.

l.insert(< pos >, < val >) − > Inserts < val > at position < pos >.

l.remove(< val >) − > removes first element matching < val >,
raises ValueError if no such value exists.

l.index(< val >) − > returns index of first occurence of < val >,
raises ValueError if no such value exists.

l.pop(< index >) − > removes element at < index >, if no index is
specified last element is returned.

Example

>>> l = [1, 2, 3, 4, 5, 6, 7]
>>> l.append(8)
>>> l
[1, 2, 3, 4, 5, 6, 7, 8]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 22 / 44

Dictionary Operations

d.has key(< val >) − > returns true if key by < val > exists, else
returns false.

d.items() − > returns list of 2 value tuple, with first element key and
second value.

d.keys() − > returns list of all keys in dictionary.

d.values() − > returns list of all values in dictionary.

d.iteritems() − > returns an iteratable object of dictionay, giving a
tuple of (key, value) on every iteration.

Example

>>> d = { ’a’:1 , ’abc’:878 }
>>> for i,j in d.iteritems():
. . . print i, j
. . .
a 1
abc 878

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 23 / 44

Control Flow

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 24 / 44

Input and Output

Input
to take input (string) from user we use function raw input().
function input() evaluates the input as python expression.
we use functions int(), long(), float(), and str() to convert the
input to desired type.

Output
print is a keyword for giving output to a console or a file.
print can take multiple arguments saperated by comma (,)
if you dont want a newline add comma (,) at the end.

Example

>>> val = raw input(“Enter a number: ”)
Enter a number: 123
>>> val = int(val) + 1
>>> print “Number is”, val
Number is 124

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 25 / 44

Input and Output

Input
to take input (string) from user we use function raw input().
function input() evaluates the input as python expression.
we use functions int(), long(), float(), and str() to convert the
input to desired type.

Output
print is a keyword for giving output to a console or a file.
print can take multiple arguments saperated by comma (,)
if you dont want a newline add comma (,) at the end.

Example

>>> val = raw input(“Enter a number: ”)
Enter a number: 123
>>> val = int(val) + 1
>>> print “Number is”, val
Number is 124

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 25 / 44

Input and Output

Input
to take input (string) from user we use function raw input().
function input() evaluates the input as python expression.
we use functions int(), long(), float(), and str() to convert the
input to desired type.

Output
print is a keyword for giving output to a console or a file.
print can take multiple arguments saperated by comma (,)
if you dont want a newline add comma (,) at the end.

Example

>>> val = raw input(“Enter a number: ”)
Enter a number: 123
>>> val = int(val) + 1
>>> print “Number is”, val
Number is 124

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 25 / 44

if

if is a conditional keyword, for a simple “if then else” clause in english.

Header lines(?) are always concluded with a “:” followed by indented
block of statements.

optionally if can be followed by an “else if” which is known as “elif”
in Python.

expressions can be logically connected by using “or”/“and”.

Tip Just remember we need to put “:” where every we used “{}” in other
languages, and statements following ’if’ should always be indented.

Example

if a == 1:
print “value of a is 1”

elif a == 2:
print “value of a is 2”

else:
print “value of a is not 1 or 2”

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 26 / 44

if

if is a conditional keyword, for a simple “if then else” clause in english.

Header lines(?) are always concluded with a “:” followed by indented
block of statements.

optionally if can be followed by an “else if” which is known as “elif”
in Python.

expressions can be logically connected by using “or”/“and”.

Tip Just remember we need to put “:” where every we used “{}” in other
languages, and statements following ’if’ should always be indented.

Example

if a == 1:
print “value of a is 1”

elif a == 2:
print “value of a is 2”

else:
print “value of a is not 1 or 2”

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 26 / 44

while

while is used for repeated execution of a block of code till a
condiction holds true.

in Python while has an optional else clause which executes when the
condiction evaluates to false.

following values are considered flase -> None, False, any numeric type
equal to zero, any empty sequence (), [],‘’ or any empty mapping {}.

Example

limit = 5
val = 0
while val < limit :

print val,
val +=1

Output :

0 1 2 3 4

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 27 / 44

while

while is used for repeated execution of a block of code till a
condiction holds true.

in Python while has an optional else clause which executes when the
condiction evaluates to false.

following values are considered flase -> None, False, any numeric type
equal to zero, any empty sequence (), [],‘’ or any empty mapping {}.

Example

limit = 5
val = 0
while val < limit :

print val,
val +=1

Output :
0 1 2 3 4

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 27 / 44

for

for is a sequence iterator(?).

for works on strings, lists, tuples, etc.

use range/xrange to generate lists

range(0,4) − > [0, 1, 2, 3]
range(0,6,2) − > [0, 2, 4]

xrange works as a iterator and does not generate a list (?)

Example

for item in range(1, 5) :
print item,

Output:
1 2 3 4

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 28 / 44

for

for is a sequence iterator(?).

for works on strings, lists, tuples, etc.

use range/xrange to generate lists

range(0,4) − > [0, 1, 2, 3]
range(0,6,2) − > [0, 2, 4]

xrange works as a iterator and does not generate a list (?)

Example

for item in range(1, 5) :
print item,

Output:
1 2 3 4

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 28 / 44

for

for is a sequence iterator(?).

for works on strings, lists, tuples, etc.

use range/xrange to generate lists

range(0,4) − > [0, 1, 2, 3]
range(0,6,2) − > [0, 2, 4]

xrange works as a iterator and does not generate a list (?)

Example

for item in range(1, 5) :
print item,

Output:

1 2 3 4

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 28 / 44

for

for is a sequence iterator(?).

for works on strings, lists, tuples, etc.

use range/xrange to generate lists

range(0,4) − > [0, 1, 2, 3]
range(0,6,2) − > [0, 2, 4]

xrange works as a iterator and does not generate a list (?)

Example

for item in range(1, 5) :
print item,

Output:
1 2 3 4

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 28 / 44

break / continue

break

used for loop termination
if nested, terminates the inner loop

continue

terminates the current iteration and starts the next
it does not terminate the loop

Example

for i in range(1,10) :
if i == 6 :

break
if i == 3 :

continue
print i,

Output:
1 2 4 5

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 29 / 44

break / continue

break

used for loop termination
if nested, terminates the inner loop

continue

terminates the current iteration and starts the next
it does not terminate the loop

Example

for i in range(1,10) :
if i == 6 :

break
if i == 3 :

continue
print i,

Output:

1 2 4 5

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 29 / 44

break / continue

break

used for loop termination
if nested, terminates the inner loop

continue

terminates the current iteration and starts the next
it does not terminate the loop

Example

for i in range(1,10) :
if i == 6 :

break
if i == 3 :

continue
print i,

Output:
1 2 4 5

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 29 / 44

List Comprehensions

Normal use of “for” loop is to iterate and build a new list

List comprehensions simplifies the above task

Syntax − >
[<expression> for <target> in <iterable> <condiction>]

there can be multiples statements.

Example

>>> [x*2 for x in range(1,5)]

[2, 4, 6, 8]
>>> [x for x in range(0,10) if x%2 == 0 and x > 2]
[4, 6, 8]
>>> [x+y for x in range(1,4) for y in range(1,4)]
[2, 3, 4, 3, 4, 5, 4, 5, 6]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 30 / 44

List Comprehensions

Normal use of “for” loop is to iterate and build a new list

List comprehensions simplifies the above task

Syntax − >
[<expression> for <target> in <iterable> <condiction>]

there can be multiples statements.

Example

>>> [x*2 for x in range(1,5)]
[2, 4, 6, 8]
>>> [x for x in range(0,10) if x%2 == 0 and x > 2]

[4, 6, 8]
>>> [x+y for x in range(1,4) for y in range(1,4)]
[2, 3, 4, 3, 4, 5, 4, 5, 6]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 30 / 44

List Comprehensions

Normal use of “for” loop is to iterate and build a new list

List comprehensions simplifies the above task

Syntax − >
[<expression> for <target> in <iterable> <condiction>]

there can be multiples statements.

Example

>>> [x*2 for x in range(1,5)]
[2, 4, 6, 8]
>>> [x for x in range(0,10) if x%2 == 0 and x > 2]
[4, 6, 8]
>>> [x+y for x in range(1,4) for y in range(1,4)]

[2, 3, 4, 3, 4, 5, 4, 5, 6]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 30 / 44

List Comprehensions

Normal use of “for” loop is to iterate and build a new list

List comprehensions simplifies the above task

Syntax − >
[<expression> for <target> in <iterable> <condiction>]

there can be multiples statements.

Example

>>> [x*2 for x in range(1,5)]
[2, 4, 6, 8]
>>> [x for x in range(0,10) if x%2 == 0 and x > 2]
[4, 6, 8]
>>> [x+y for x in range(1,4) for y in range(1,4)]
[2, 3, 4, 3, 4, 5, 4, 5, 6]

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 30 / 44

Functions

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 31 / 44

What are Functions?

A function is a group of statements that executes on request.

In Python functions are also objects.

function return type is not required.

if function does not return any value, default value of None is
returned.

a function can take another function name as argument and return a
function name (as in functional programming languages).

a function is defined using the keyoword def followed by function
name and parameters

Example

>>> def abc(arg):
· · · print arg
· · ·
>>> abc(“Hello”)
Hello

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 32 / 44

What are Functions?

A function is a group of statements that executes on request.

In Python functions are also objects.

function return type is not required.

if function does not return any value, default value of None is
returned.

a function can take another function name as argument and return a
function name (as in functional programming languages).

a function is defined using the keyoword def followed by function
name and parameters

Example

>>> def abc(arg):
· · · print arg
· · ·
>>> abc(“Hello”)
Hello

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 32 / 44

Parameters

Default Value is the value assigned to function argument in function
defination.

Types of Parameters

Mandatory Parameters with no default values.
Optional Parameters with default values.

At function call values for all mandatory parameters are required.

There is no function overloading in python.

Example

def abc (arg1,arg2=10): # arg2 has default value of 10
print arg1, arg2

abc(1)
abc(2,3)
Output :
1 10
2 3

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 33 / 44

Parameters

Default Value is the value assigned to function argument in function
defination.

Types of Parameters

Mandatory Parameters with no default values.
Optional Parameters with default values.

At function call values for all mandatory parameters are required.

There is no function overloading in python.

Example

def abc (arg1,arg2=10): # arg2 has default value of 10
print arg1, arg2

abc(1)
abc(2,3)
Output :

1 10
2 3

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 33 / 44

Parameters

Default Value is the value assigned to function argument in function
defination.

Types of Parameters

Mandatory Parameters with no default values.
Optional Parameters with default values.

At function call values for all mandatory parameters are required.

There is no function overloading in python.

Example

def abc (arg1,arg2=10): # arg2 has default value of 10
print arg1, arg2

abc(1)
abc(2,3)
Output :
1 10

2 3

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 33 / 44

Parameters

Default Value is the value assigned to function argument in function
defination.

Types of Parameters

Mandatory Parameters with no default values.
Optional Parameters with default values.

At function call values for all mandatory parameters are required.

There is no function overloading in python.

Example

def abc (arg1,arg2=10): # arg2 has default value of 10
print arg1, arg2

abc(1)
abc(2,3)
Output :
1 10
2 3

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 33 / 44

Modules

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 34 / 44

What are Modules?

Modules group code and data for reuse.

Modules or a part of modules can be used in other code using import
or from statements.

import

Syntax − >
import module [as othername]

import imports whole of specified module in the namespace
module/othername.

from

Syntax − >
from module import something [as somethingelse]

using from import something inside the current namespace as
something/somethingelse.

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 35 / 44

What are Modules?

Modules group code and data for reuse.

Modules or a part of modules can be used in other code using import
or from statements.

import

Syntax − >
import module [as othername]

import imports whole of specified module in the namespace
module/othername.

from

Syntax − >
from module import something [as somethingelse]

using from import something inside the current namespace as
something/somethingelse.

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 35 / 44

What are Modules?

Modules group code and data for reuse.

Modules or a part of modules can be used in other code using import
or from statements.

import

Syntax − >
import module [as othername]

import imports whole of specified module in the namespace
module/othername.

from

Syntax − >
from module import something [as somethingelse]

using from import something inside the current namespace as
something/somethingelse.

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 35 / 44

How to make Module?

Any python file (.py) can work as a module.

If the file is written to execute when invoked, it is executed when
imported.

To allow a file to executed when invoked and avoid when imported we
compare variable “ name ”

Python file executing as main code has variable “ name ” set to
“ main ”

Python file executing as module has variable “ name ” set to the
module name

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 36 / 44

Lets create a file example.py, which we will use to describe modules

example.py

some functions
def div(a,b):

print a/b
code that will execute in every case
print “Hi”
code that will execute only if file invoked
if name == “ main ”:

mul(2,2)
print “not as module”

else:
print “as module”

Try import and from on example.py
and also try executing the file.

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 37 / 44

File I/O

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 38 / 44

File

file is a built-in type in Python.

Allows access to files in an Operating System independent manner.
Different modes to access a file are

’r’ opens an already existing file in read only mode.
’w’ opens a file in write only mode, if file exists it is truncated else a
new file in created.
’a’ opens a file in write only mode, if file exists new data in added at
the end, else a new file is created.
’r+’ file is opened in read and write mode, but file must exist.
’w+’ file is opened in read and write mode, file is truncated if exists,
else a new file is created.
’a+’ file is opened in read and write mode, if file exists new data in
added at the end, else a new file is created.
append ’b’ to the mode to open file in binary mode.

modes are passed to function open which is used to open a file
Synatx − >
<file obj> = open(<file name>,<mode>,bufsize=-1)

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 39 / 44

File

file is a built-in type in Python.

Allows access to files in an Operating System independent manner.
Different modes to access a file are

’r’ opens an already existing file in read only mode.

’w’ opens a file in write only mode, if file exists it is truncated else a
new file in created.
’a’ opens a file in write only mode, if file exists new data in added at
the end, else a new file is created.
’r+’ file is opened in read and write mode, but file must exist.
’w+’ file is opened in read and write mode, file is truncated if exists,
else a new file is created.
’a+’ file is opened in read and write mode, if file exists new data in
added at the end, else a new file is created.
append ’b’ to the mode to open file in binary mode.

modes are passed to function open which is used to open a file
Synatx − >
<file obj> = open(<file name>,<mode>,bufsize=-1)

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 39 / 44

File

file is a built-in type in Python.

Allows access to files in an Operating System independent manner.
Different modes to access a file are

’r’ opens an already existing file in read only mode.
’w’ opens a file in write only mode, if file exists it is truncated else a
new file in created.

’a’ opens a file in write only mode, if file exists new data in added at
the end, else a new file is created.
’r+’ file is opened in read and write mode, but file must exist.
’w+’ file is opened in read and write mode, file is truncated if exists,
else a new file is created.
’a+’ file is opened in read and write mode, if file exists new data in
added at the end, else a new file is created.
append ’b’ to the mode to open file in binary mode.

modes are passed to function open which is used to open a file
Synatx − >
<file obj> = open(<file name>,<mode>,bufsize=-1)

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 39 / 44

File

file is a built-in type in Python.

Allows access to files in an Operating System independent manner.
Different modes to access a file are

’r’ opens an already existing file in read only mode.
’w’ opens a file in write only mode, if file exists it is truncated else a
new file in created.
’a’ opens a file in write only mode, if file exists new data in added at
the end, else a new file is created.

’r+’ file is opened in read and write mode, but file must exist.
’w+’ file is opened in read and write mode, file is truncated if exists,
else a new file is created.
’a+’ file is opened in read and write mode, if file exists new data in
added at the end, else a new file is created.
append ’b’ to the mode to open file in binary mode.

modes are passed to function open which is used to open a file
Synatx − >
<file obj> = open(<file name>,<mode>,bufsize=-1)

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 39 / 44

File

file is a built-in type in Python.

Allows access to files in an Operating System independent manner.
Different modes to access a file are

’r’ opens an already existing file in read only mode.
’w’ opens a file in write only mode, if file exists it is truncated else a
new file in created.
’a’ opens a file in write only mode, if file exists new data in added at
the end, else a new file is created.
’r+’ file is opened in read and write mode, but file must exist.

’w+’ file is opened in read and write mode, file is truncated if exists,
else a new file is created.
’a+’ file is opened in read and write mode, if file exists new data in
added at the end, else a new file is created.
append ’b’ to the mode to open file in binary mode.

modes are passed to function open which is used to open a file
Synatx − >
<file obj> = open(<file name>,<mode>,bufsize=-1)

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 39 / 44

File

file is a built-in type in Python.

Allows access to files in an Operating System independent manner.
Different modes to access a file are

’r’ opens an already existing file in read only mode.
’w’ opens a file in write only mode, if file exists it is truncated else a
new file in created.
’a’ opens a file in write only mode, if file exists new data in added at
the end, else a new file is created.
’r+’ file is opened in read and write mode, but file must exist.
’w+’ file is opened in read and write mode, file is truncated if exists,
else a new file is created.

’a+’ file is opened in read and write mode, if file exists new data in
added at the end, else a new file is created.
append ’b’ to the mode to open file in binary mode.

modes are passed to function open which is used to open a file
Synatx − >
<file obj> = open(<file name>,<mode>,bufsize=-1)

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 39 / 44

File

file is a built-in type in Python.

Allows access to files in an Operating System independent manner.
Different modes to access a file are

’r’ opens an already existing file in read only mode.
’w’ opens a file in write only mode, if file exists it is truncated else a
new file in created.
’a’ opens a file in write only mode, if file exists new data in added at
the end, else a new file is created.
’r+’ file is opened in read and write mode, but file must exist.
’w+’ file is opened in read and write mode, file is truncated if exists,
else a new file is created.
’a+’ file is opened in read and write mode, if file exists new data in
added at the end, else a new file is created.

append ’b’ to the mode to open file in binary mode.

modes are passed to function open which is used to open a file
Synatx − >
<file obj> = open(<file name>,<mode>,bufsize=-1)

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 39 / 44

File

file is a built-in type in Python.

Allows access to files in an Operating System independent manner.
Different modes to access a file are

’r’ opens an already existing file in read only mode.
’w’ opens a file in write only mode, if file exists it is truncated else a
new file in created.
’a’ opens a file in write only mode, if file exists new data in added at
the end, else a new file is created.
’r+’ file is opened in read and write mode, but file must exist.
’w+’ file is opened in read and write mode, file is truncated if exists,
else a new file is created.
’a+’ file is opened in read and write mode, if file exists new data in
added at the end, else a new file is created.
append ’b’ to the mode to open file in binary mode.

modes are passed to function open which is used to open a file
Synatx − >
<file obj> = open(<file name>,<mode>,bufsize=-1)

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 39 / 44

File

file is a built-in type in Python.

Allows access to files in an Operating System independent manner.
Different modes to access a file are

’r’ opens an already existing file in read only mode.
’w’ opens a file in write only mode, if file exists it is truncated else a
new file in created.
’a’ opens a file in write only mode, if file exists new data in added at
the end, else a new file is created.
’r+’ file is opened in read and write mode, but file must exist.
’w+’ file is opened in read and write mode, file is truncated if exists,
else a new file is created.
’a+’ file is opened in read and write mode, if file exists new data in
added at the end, else a new file is created.
append ’b’ to the mode to open file in binary mode.

modes are passed to function open which is used to open a file
Synatx − >
<file obj> = open(<file name>,<mode>,bufsize=-1)

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 39 / 44

File Object Methods

Let us assume we have
f = open(’file’,’r+’)

f.read([size]) reads size bytes from file and returns, if size is not
specified or if size < 0 then size reads whole file.

f.readline() reads one line from file (till \n) and returns the line
(including \n)

f.readlines() reads all lines in file and returns a list of all lines.

f.write(data) writes data to file.

f.close() closes the file.

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 40 / 44

File Object Methods

Let us assume we have
f = open(’file’,’r+’)

f.read([size]) reads size bytes from file and returns, if size is not
specified or if size < 0 then size reads whole file.

f.readline() reads one line from file (till \n) and returns the line
(including \n)

f.readlines() reads all lines in file and returns a list of all lines.

f.write(data) writes data to file.

f.close() closes the file.

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 40 / 44

File Object Methods

Let us assume we have
f = open(’file’,’r+’)

f.read([size]) reads size bytes from file and returns, if size is not
specified or if size < 0 then size reads whole file.

f.readline() reads one line from file (till \n) and returns the line
(including \n)

f.readlines() reads all lines in file and returns a list of all lines.

f.write(data) writes data to file.

f.close() closes the file.

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 40 / 44

File Object Methods

Let us assume we have
f = open(’file’,’r+’)

f.read([size]) reads size bytes from file and returns, if size is not
specified or if size < 0 then size reads whole file.

f.readline() reads one line from file (till \n) and returns the line
(including \n)

f.readlines() reads all lines in file and returns a list of all lines.

f.write(data) writes data to file.

f.close() closes the file.

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 40 / 44

File Object Methods

Let us assume we have
f = open(’file’,’r+’)

f.read([size]) reads size bytes from file and returns, if size is not
specified or if size < 0 then size reads whole file.

f.readline() reads one line from file (till \n) and returns the line
(including \n)

f.readlines() reads all lines in file and returns a list of all lines.

f.write(data) writes data to file.

f.close() closes the file.

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 40 / 44

File Object Methods

Let us assume we have
f = open(’file’,’r+’)

f.read([size]) reads size bytes from file and returns, if size is not
specified or if size < 0 then size reads whole file.

f.readline() reads one line from file (till \n) and returns the line
(including \n)

f.readlines() reads all lines in file and returns a list of all lines.

f.write(data) writes data to file.

f.close() closes the file.

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 40 / 44

And we are done..

Thank You!!!

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 41 / 44

And we are done..

Questions?

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 42 / 44

Contact Information

Ankur Shrivastava
ankur@ankurs.com

http://ankurs.com Linux User’s Group Manipal
http://lugmanipal.org

http://forums.lugmanipal.org

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 43 / 44

http://ankurs.com
http://lugmanipal.org
http://forums.lugmanipal.org

Copying

Creative Commons Attribution-Noncommercial-No Derivative Works 2.5
India License

http://creativecommons.org/licenses/by-nc-nd/2.5/in/

Ankur Shrivastava (LUG Manipal) Beginning Python January 29, 2010 44 / 44

http://creativecommons.org/licenses/by-nc-nd/2.5/in/

	Introduction
	LUG Manipal
	Points To Remember
	What is Python?
	What we will learn?
	What we require?
	Where is it used
	Difference from C/C++/Java
	Versions of Python
	Interactive session

	Language Basics
	Indentation
	Data Types
	Index and Slices
	Variables
	Helpful Functions
	List Operations
	Dictionary Operations

	Control Flow
	Input and Output
	if
	while
	for
	break / continue
	List Comprehensions

	Functions
	What are Functions?
	Parameters

	Modules
	What are Modules?
	How to make Module?
	Module example

	File I/O
	file
	File Object Methods

	Contact Information
	Copying

